Электрический пробой газов

Электрический пробой развивается практически мгновенно при достижении напряженности поля равной электропроч-ности диэлектрика. Обычно электрический пробой наблюдается в газах, но может развиваться и в твердых и в жидких диэлектриках.
Электрический пробой газов. Увеличение плотности ионов в диэлектриках (пробой) может быть вызвано развитием ударной ионизации или ионной ионизации. Для развития ударной ионизации необходимо выполнение условия: Eql=mv2/2=Eэс, где: Е – напряженность поля, q – заряд иона, l – длина пробега иона от одного столкновения до другого, mv2/2 – кинетическая энергия иона, Еэс – энергия электростатического взаимодействия электронов с ядрами атомов.
При выполнении этого условия ионы, пролетая под действием электрического поля от одного столкновения со структур-ными единицами материала до другого, набирают кинетическую энергию, достаточную для того чтобы выбить электрон из атома. В результате столкновения появляется два дополнительных носителя заряда: электрон и новый ион. Таким образом, размножение носителей заряда возрастает в геометрической прогрессии и происходит пробой диэлектрика.
При напряженности поля меньшей, чем та, при которой наблюдается ударная ионизация в газах может развиваться фотонная ионизация. В этом случае при столкновении иона со структурной единицей материала энергии переданной атому не достаточно для отрыва электрона от атома, поэтому возбужденные электроны испускают фотоны. При одно-временном попадании нескольких фотонов на какую-либо молекулу, переданная энергия сравнивается с энергией электростатического взаимодействия электронов с ядрами и происходит ионизация.
Для иллюстрации развития фотонной ионизации рассмотрим зависимость электропрочности газов от расстояния между электродами (рис. 40).
Очевидно, что длина пробега носителей заряда не зависит от расстояния между электродами, а зависит только от давления газа. Поэтому можно ожидать, что электропрочность газов не будет зависеть от расстояния между электродами, эксперименты показывают обратное. При увеличении расстояния между электродами напряжение пробоя не линейно повышается, а электропрочность падает. Природа такой зависимости состоит в том, что при увеличении расстояния между электродами, возрастает объем заключенного между ними газа. Следовательно, увеличивается количество ионов между электродами. Рост столкновений ионов и молекулами газа приводит к возрастанию количества фотонов, образующихся в единицу времени. Поэтому вероятность попадания нескольких фотонов на одну и ту же молекулу увеличивается.

Другим ярким представителем развития фотонной ионизации является зависимость электропрочности газов от давления. При повышении давления выше атмосферного электропрочность газа растет. Это связано с уменьшением межмолекулярных расстоянием и снижением длины свободного пробега ионов. При снижении давления электрическая прочность газа уменьшается и даже под действием поля малой напряженности газ начинает светиться. Для случая воздуха, чем ниже давление, тем меньше длина волны испускаемого света, то есть по мере уменьшения давления цвет свечения меняется с красного до синего. При низких давлениях воздух перестает светиться - «черный вакуум». Изменения длины светового излучения связано с тем, что по мере снижения давления длина пробега ионов возрастает и ионы набирают большую кинетическую энергию. Соответственно возбужденные столкновениями с ионами электроны атомов испускают кванты большей энергии или меньшей длины. При разряжении соответствующем «черному вакууму» концентрация молекул в межэлектродном пространстве насколько мала, что длина пробега ионов сравнивается с межэлектродным промежутком. Поэтому вероятность ионизации молекул становится ничтожно малой и пробой наступает за счет вырывания электронов из электродов.
Взаимодействие ионов, ускоренных электрическим полем, с молекулами газа приводит к образованию дополнительного количества положительных ионов и электронов. Внешнее электрическое поле разносит ионы и электроны в разные стороны. Однако по мере движения ионы рекомбинируют с электронами. Таким образом, одновременно развиваются два процесса: а) размножение заряженных частиц за счет ионизации молекул и б) уменьшение количества заряженных частиц за счет их взаимной рекомбинации.
В случае постоянного электрического поля концентрация заряженных частиц в межэлектродном пространстве зависит только от напряженности поля. При увеличении напряженности поля происходит преобладание процесса ионизации над процессом рекомбинации и при определенной напряженности поля происходит пробой.
Процессы изменения концентрации ионов, происходящие в низкочастотных полях, аналогичны процессам в постоянном поле. Однако в высокочастотных полях концентрация заряженных частиц меняется. При достаточно высоких частотах подвижные электроны успевают сместиться на большие расстояния и достигают электродов. Малоподвижные положи-тельные ионы с большой массой за время полу периода колебаний не успевают сместиться на сколь либо значительные расстояния и концентрация положительных ионов в межэлектродном пространстве растет. Появляется так называемый «объемный заряд». Поэтому, начиная с частот, превышающих десятки килогерц вероятность столкновения ионов с молекулами возрастает и электропрочность газов снижается (рис. 42). Дальнейший рост частоты электрического поля (или уменьшение его полу периода) приводит к тому, что за время полу периода не только положительные ионы не успевают сместиться на сколь либо значительные расстояния, но и электроны не успевают вылететь из межэлектродного пространства. Вероятность рекомбинации заряженных частиц растет и их концентрация падает. Кроме того, снижение времени полу периода требует увеличения силы, действующей на ионы, чтобы кинетической энергии хватило для ионизации молекул. Поэтому при частотах, превышающих мегагерц, электропрочность газов возрастает.
При рассмотрении электрического пробоя в твердых диэлектриках следует иметь в виду, что электрическая прочность зависит не только от материала, но и от формы изолятора. Дело в том, что в твердых диэлектриках помимо сквозного электрического пробоя может развиваться поверхностный пробой.
Для развития сквозного пробоя требуется очень высокая напряженность электрического поля. Это связано с тем, что плотность твердых диэлектриков велика и длина пробега ионов мала. Следовательно, для того, чтобы ион набрал достаточную кинетическую энергию, (mv2/2=Eql) нужна высокая напряженность электрического поля. Вместе с тем, на поверхности любого материала имеется слой адсорбированных молекул. Из окружающего пространства (из воздуха) на поверхность могут адсорбироваться молекулы азота, кислорода, углекислого газа, воды и так далее. В тех местах, где адсорбируются молекулы воды и углекислого газа, образуется угольная кислота. Иначе говоря, на поверхности появля-ются участки с повышенной концентрацией ионов. Таким образом, вероятность ионизации молекул на поверхности диэлектрика становится выше, а электропрочность снижается.
Другой важной особенностью пробоя твердых диэлектриков является снижение их электрической прочности после пробоя. Пробой сопровождается плавлением или прожиганием диэлектрика. При повторном приложении напряжения пробой возникает в этой области при сравнительно малой напряженности поля. Особенно опасен пробой для органиче-ских диэлектриков, в месте пробоя которых происходит разложение органики и выделение элементарного углерода. Следовательно, пробой твердой изоляции электрической машины или аппарата означает аварийное состояние устройст-ва. После пробоя жидкостей или газов высокая подвижность молекул приводит к исчезновению канала пробоя. Поэтому, хотя газовая изоляция и имеет меньшую электропрочность, но после пробоя эксплуатационные свойства материала восстанавливаются, то есть она более надежна.
Электротепловой пробой диэлектриков.
При нахождении диэлектрика в электрическом поле, часть энергии электрического поля рассеивается в диэлектрике из-за диэлектрических потерь, и диэлектрик нагревается. При этом диэлектрик нагревается. Повышение температуры диэлектрика по сравнению с окружающей средой ведет к отводу тепла. Дальнейшее развитие процессов зависит от соотношения скорости отвода тепла и скорости тепловыделения. На рисунке 43 показаны зависимости мощности тепловыделения (Ртв) и мощности отвода тепла (Рто) от температуры для неполярного диэлектрика. Как видно из приведенного рисунка в области температур от точки a до точки b мощности отвода тепла превышает мощность тепловыделения, поэтому повышения температуры не происходит. Вне этой области мощность выделения тепла превышает мощность отвода тепла и диэлектрик нагревается. Нагрев материала диэлектрика может привести к его растрескиванию, оплавлению, обугливанию, что снижает электропрочность диэлектрика и ведет к его разрушению.
Очевидно, что стойкость к электротепловому пробою зависит как от свойств самого материала (у полярных диэлектри-ков диэлектрические потери выше и стойкость к электротепловому пробою ниже), так и от конструкции изолятора. Чем выше поверхность изолятора, тем больше тепла рассеивается в окружающую среду и меньше вероятность электротепло-вого пробоя.
Следует также отметить, что в случае, когда рабочая температура изолятора приближается к точке b любое повышение температуры приведет к выходу изоляции из строя. В то же время в случае, когда рабочая температура находится ниже точки, а колебания температуры не столь опасны. Нагрев диэлектрика (при нахождении его при температуре ниже точки а) приведет к увеличению мощности отвода тепла. Поэтому мощности выделения и отвода тепла сравняются.
Таким образом, наиболее опасными температурами являются температуры вблизи точки b. Поэтому зависимость электропрочности диэлектриков от температуры выглядит, как показано на рис.
Электрохимический пробой диэлектриков.
Данный вид пробоя обусловлен тем, что при длительном нахождении в электрическом поле происходит изменение химического состава диэлектрика. Чем выше напряженность электрического поля, тем сильнее возбуждаются молекулы диэлектрика и время, необходимое для выхода материала диэлектрика из строя снижается. В то же время химически инертные диэлектрики имеют больше время работы. Зависимость времени безопасной службы материала диэлектрика от времени принято называть «кривой жизни» диэлектрика (рис.45).
Как видно из приведенного рисунка, стабильность фторопласта (кривая б) заметно выше, чем стабильность полиэтилена (кривая а). Это связано с тем, что энергия связи фтора с углеродом (450 кДж/моль) заметно выше энергии связи водорода с углеродом (290 кДж/моль). Поэтому для разрушения молекулы фторопласта нужны большие флуктуации энергии его устойчивость выше.

Powered by Drupal - Design by artinet