Сегнетоэлектрики

Под активными диэлектриками принято понимать диэлектрики, поляризация которых происходит не только под дейст-вием внешнего поля, но и под действием других факторов: механических усилий, температуры, воздействия света и проникающей радиации и др. Такие диэлектрики могут быть использованы в качестве активных элементов датчиков внешних воздействий. Рассмотрим три основные группы таких диэлектриков: сегнетоэлектрики, пьезоэлектрики и электреты.
Сегнетоэлектрики. В сегнетоэлектриках в определенном диапазоне температур наблюдается спонтанная или самопро-извольная поляризация. Поскольку свойства сегнетоэлектриков во многом аналогичны свойствам ферромагнетиков, за рубежом их часто называют ферроэлектриками. Рассмотрим природу спонтанной поляризации в таких материалах на примере титаната бария. Элементарную ячейку кристаллической решетки этого материала можно представить следую-щим образом. В вершинах куба находятся ионы бария, по центрам граней куба находятся ионы кислорода, а в центре куба находится ион титана (рис. 32)
Поскольку между атомами титана, кислорода и бария осуществляется ионная связь кристаллическая решетка данного соединения упакована неплотно. Следовательно, ион титана может смещаться относительно центра элементарной ячейки. При смещении иона титана к какому либо иону (или группе ионов) кислорода, кулоновские силы удерживают ион титана в этом положении, и элементарная ячейка становится поляризованной. Поляризация одной элементарной ячейки приводит к появлению диполя, электрическое поле которого поляризует соседние элементарные ячейки. Таким образом, кристалл самопроизвольно (спонтанно) поляризуется. Повышение температуры приводит к активизации колебаний иона титана, и при равенстве энергии теплового движения этого иона с энергией электростатического взаимодействия с ионами кислорода элементарные ячейки кристалла деполяризуется. В итоге кристалл переходит из сегнетоэлектрического в параэлектрическое состояние. Температуру перехода принято называть температурой Кюри.
Важно отметить, что при температурах, меньших температуры Кюри, в отсутствии внешнего поля достаточно большие кристаллы сегнетоэлектриков не обладают электрическим моментом. Это обусловлено тем, что в случае, когда все дипольные моменты элементарных ячеек кристалла ориентированы одинаково, вокруг кристалла появляется электриче-ское поле. Потенциальная энергия такого кристалла резко возрастает. Для снижения потенциальной энергии кристалл разбивается на области (домены), в пределах которых дипольные моменты элементарных ячеек параллельны, но сум-марные электрические моменты соседних доменов антипараллельны или перпендикулярны. Таким образом, суммарный электрический момент кристалла равен нулю.
При помещении сегнетоэлектрика в электрическое поле суммарные моменты диполей ориентируются по полю и поляризация сегнетоэлектрика возрастает (рис. 33)
Рост поляризации приводит к росту отношения Р/Е, а следовательно, к росту диэлектрической проницаемости. Однако по мере роста напряженности поля прирост поляризации снижается, падает отношение P/E, и поэтому зависимость диэлектрической проницаемости от напряженности поля имеет куполообразный вид. У сегнетоэлектриков максимальные значения диэлектрической проницаемости достигают сотен тысяч единиц, соответственно, габариты конденсаторов из таких материалов могут быть весьма малыми.
Существенное влияние на диэлектрическую проницаемость оказывает температура. При повышении температуры кинетическая энергия ангармонических колебаний ионов возрастает, и электростатическая связь между ионами ослабевает. Внешнему полю легче перебросить ионы из одного положения в другое, соответственно, поляризация и диэлектрическая проницаемость возрастают. Максимум диэлектрической проницаемости наблюдается при температуре Кюри.
Легирование сегнетоэлектриков приводит к изменению энергии связи между ионами и дает возможность изменять температуру Кюри и величину диэлектрической проницаемости.
Пьезоэлектрики. Пьезоэлектриками называют диэлектрики, в которых под действием механических напряжений появляется поляризация, а под действием электрического поля пьезоэлектрики упруго деформируются. Таким образом, пьезоэлектрики являются электромеханическими преобразователями, преобразующими механическую энергию в электрическую и обратно.
Пьезоэлектрический эффект наблюдается в кристаллах, не имеющих центра симметрии, у которых при деформации ячейки происходит появление электрического момента. Заряды q, возникающие на поверхности пластин из пьезокри-сталлов пропорциональны приложенным силам.
При приложении разности потенциалов в пьезоэлектрике возникает деформация, которая, в первом приближении, равна напряженности поля.
Пьезоэлектрическими свойствами обладают многие кристаллы, лишенные центра симметрии: кварц, турмалин, сегнето-ва соль и др. Часто используется пьезокерамика. Пьезоэлектрики нашли широкое применение для изготовления резона-торов, преобразователей колебаний и др.
Электреты. Электретами называют диэлектрики, у которых постоянный электрический момент или избыточный заряд сохраняются длительное время. Электреты могут служить источниками электрического поля в окружающем пространст-ве, аналогично постоянным магнитам, являющимися источниками магнитного поля. В зависимости от способов получе-ния различают термоэлектреты, фотоэлектреты, электроэлектреты, трибоэлектреты, радиоэлектреты.
Термоэлектреты. Впервые теромэлектрет был получен японским физиком Эгутси в 1921 году. В ванночку между двумя электродами заливалась смесь полярных диэлектриков карнаубского и пчелиного восков с добавлением канифоли, которая застывала при приложении напряжения между электродами. После застывания диэлектрика он являлся источни-ком постоянного электрического поля.
При сравнительно слабых внешних полях (Е<10 кВ/мм) в термоэлектретах происходят в основном процессы поляриза-ции. При этом стороны электрета, обращенные к электродам, имеют заряд противоположный по знаку заряду электрода. Такие электреты называют гетероэлектретами. При электризации в сильных полях (Е>10 кВ/мм), помимо поляризации, происходит эмиссия зарядов с поверхности электрода в диэлектрик. В этом случае поверхности диэлектрика, прилегаю-щие к электродам, приобретают заряд одинаковый по знаку с зарядом электрода. Такие электреты называют гомоэлек-третами.
Хорошие термоэлектреты получаются их диэлектриков с длинными полярными молекулами - полиамидов и поливинил-ацетатов. Для получения электретов также используют неорганические материалы: слюду, серу, сегнетоэлектрики. При получении электретов из неорганических сегнетоэлектриков не обязательно доводить их до плавления, достаточно нагреть их до температуры Кюри.
Фотоэлектреты и радиоэлектреты. Впервые фотоэлектрет был получен болгарским ученым Г. Наждаковым в 1937 году. Он нанес на металлический лист, служащий нижним электродом, слой серы. Через верхний сетчатый электрод сера освещалась. За счет внутреннего фотоэффекта в сере образовывались электроны и дырки, которые разносились дейст-вующим внешним полем к соответствующим электродам. После снятия внешнего поля вокруг пленки серы появлялась ЭДС.
Фотоэлектреты широко используются в ксерографии и моментальной фотографии.
При облучении диэлектриков γ-квантами и потоками быстрых электронов они также электризуются. Такие диэлектрики принято называть радиоэлектретами. Как правило, радиоэлектреты готовят на основе неорганических стекол.
Трибоэлектреты. Трибоэлектретами принято называть материалы, электризующиеся при трении. Типичные представи-тели трибоэлектретов - янтарь, эбонит, плексиглас. При трении происходит разрушение межатомных связей и перенос заряда с одной поверхности на другую.

Powered by Drupal - Design by artinet