Коннекционизм Основная идея

В отличие от цифровых систем, представляющих собой комбинации процессорных и запоминающих блоков, нейропроцессоры содержат память, распределенную в связях между очень простыми процессорами, которые часто могут быть описаны как формальные нейроны или блоки из однотипных формальных нейронов. Тем самым основная нагрузка на выполнение конкретных функций процессорами ложится на архитектуру системы, детали которой в свою очередь определяются межнейронными связями. Подход, основанный на представлении как памяти данных, так и алгоритмов системой связей (и их весами), называется коннекционизмом.
Три основных преимущества нейрокомпьютеров:
1. Все алгоритмы нейроинформатики высокопараллельны, а это уже залог высокого быстродействия.
2. Нейросистемы можно легко сделать очень устойчивыми к помехам и разрушениям.
3. Устойчивые и надежные нейросистемы могут создаваться и из ненадежных элементов, имеющих значительный разброс параметров.
Разработчики нейрокомпьютеров стремятся объединить устойчивость, быстродействие и параллелизм АВМ — аналоговых вычислительных машин — с универсальностью современных компьютеров.[6]

Строение нейрона
Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро и другие органеллы, и отростков. Выделяют два вида отростков. (Аксон обычно — длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты — как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи с до 20-и тысячами других нейронов.
Место контакта двух нейронов называется синапсом.
Нейроны восприимчивы к раздражению, то есть способны воспринимать раздражитель и отвечать на него генерацией потенциала действия (ПД). Обычно раздражителем для нейрона служит нейромедиатор, выделяемый другими нейронами в синаптические щели. Одни синапсы вызывают деполяризацию нейрона, другие — гиперполяризацию; первые являются возбуждающими, вторые — тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Архитектура нейронных сетей
Нейронные сети могут быть синхронные и асинхронные.
В синхронных нейронных сетях в каждый момент времени свое состояние меняет лишь один нейрон.
В асинхронных - состояние меняется сразу у целой группы нейронов, как правило, у всего слоя[44].
Можно выделить две базовые архитектуры - слоистые и полносвязные сети [45, 46].
Ключевым в слоистых сетях является понятие слоя.
Слой - один или несколько нейронов, на входы которых подается один и тот же общий сигнал.
Слоистые нейронные сети - нейронные сети, в которых нейроны разбиты на отдельные группы (слои) так, что обработка информации осуществляется послойно.
В слоистых сетях нейроны i-го слоя получают входные сигналы, преобразуют их и через точки ветвления передают нейронам (i+1) слоя. И так до k-го слоя, который выдает выходные сигналы для интерпретатора и пользователя. Число нейронов в каждом слое не связано с количеством нейронов в других слоях, может быть произвольным.
В рамках одного слоя данные обрабатываются параллельно, а в масштабах всей сети обработка ведется последовательно - от слоя к слою. К слоистым нейронным сетям относятся, например, многослойные персептроны, сети радиальных базисных функций, когнитрон, некогнитрон, сети ассоциативной памяти.
Однако сигнал не всегда подается на все нейроны слоя. В когнитроне, например, каждый нейрон текущего слоя получает сигналы только от близких ему нейронов предыдущего слоя.
Слоистые сети, в свою очередь, могут быть однослойными и многослойными [46].
Однослойная сеть - сеть, состоящая из одного слоя.
Многослойная сеть - сеть, имеющая несколько слоев.
В многослойной сети первый слой называется входным, последующие - внутренними или скрытыми, последний слой - выходным. Таким образом, промежуточные слои - это все слои в многослойной нейронной сети, кроме входного и выходного.
Входной слой сети реализует связь с входными данными, выходной - с выходными.
Таким образом, нейроны могут быть входными, выходными и скрытыми.
Входной слой организован из входных нейронов (input neuron), которые получают данные и распространяют их на входы нейронов скрытого слоя сети.
Скрытый нейрон (hidden neuron) - это нейрон, находящийся в скрытом слое нейронной сети.
Выходные нейроны (output neuron), из которых организован выходной слой сети, выдает результаты работы нейронной сети.
В полносвязных сетях каждый нейрон передает свой выходной сигнал остальным нейронам, включая самого себя. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети. Все входные сигналы подаются всем нейронам.

Классификация нейронных сетей
Одна из возможных классификаций нейронных сетей - по направленности связей.
Нейронные сети бывают с обратными связями и без обратных связей.
Сети без обратных связей
• Сети с обратным распространением ошибки.
Сети этой группы характеризуются фиксированной структурой, итерационным обучением, корректировкой весов по ошибкам. Такие сети были рассмотрены в предыдущей лекции.
• Другие сети (когнитрон, неокогнитрон, другие сложные модели).
Преимуществами сетей без обратных связей является простота их реализации и гарантированное получение ответа после прохождения данных по слоям.
Недостатком этого вида сетей считается минимизация размеров сети - нейроны многократно участвуют в обработке данных.
Меньший объем сети облегчает процесс обучения.
Сети с обратными связями
• Сети Хопфилда (задачи ассоциативной памяти).
• Сети Кохонена (задачи кластерного анализа).
Преимуществами сетей с обратными связями является сложность обучения, вызванная большим числом нейронов для алгоритмов одного и того же уровня сложности.
Недостатки этого вида сетей - требуются специальные условия, гарантирующие сходимость вычислений.
Другая классификация нейронных сетей: сети прямого распространения и рекуррентные сети.
Сети прямого распространения
• Персептроны.
• Сеть Back Propagation.
• Сеть встречного распространения.
• Карта Кохонена.
Рекуррентные сети. Характерная особенность таких сетей - наличие блоков динамической задержки и обратных связей, что позволяет им обрабатывать динамические модели.
• Сеть Хопфилда.
• Сеть Элмана - сеть, состоящая из двух слоев, в которой скрытый слой охвачен динамической обратной связью, что позволяет учесть предысторию наблюдаемых процессов и накопить информацию для выработки правильной стратегии управления. Эти сети применяются в системах управления движущимися объектами.
Нейронные сети могут обучаться с учителем или без него.
При обучении с учителем для каждого обучающего входного примера требуется знание правильного ответа или функции оценки качества ответа. Такое обучение называют управляемым. Нейронной сети предъявляются значения входных и выходных сигналов, а она по определенному алгоритму подстраивает веса синаптических связей. В процессе обучения производится корректировка весов сети по результатам сравнения фактических выходных значений с входными, известными заранее.
При обучении без учителя раскрывается внутренняя структура данных или корреляции между образцами в наборе данных. Выходы нейронной сети формируются самостоятельно, а веса изменяются по алгоритму, учитывающему только входные и производные от них сигналы. Это обучение называют также неуправляемым. В результате такого обучения объекты или примеры распределяются по категориям, сами категории и их количество могут быть заранее не известны.

Powered by Drupal - Design by artinet