Обучение нейронных сетей билет

Перед использованием нейронной сети ее необходимо обучить.
Процесс обучения нейронной сети заключается в подстройке ее внутренних параметров под конкретную задачу.
Алгоритм работы нейронной сети является итеративным, его шаги называют эпохами или циклами.
Эпоха - одна итерация в процессе обучения, включающая предъявление всех примеров из обучающего множества и, возможно, проверку качества обучения на контрольном множестве.
Процесс обучения осуществляется на обучающей выборке.
Обучающая выборка включает входные значения и соответствующие им выходные значения набора данных. В ходе обучения нейронная сеть находит некие зависимости выходных полей от входных.
Таким образом, перед нами ставится вопрос - какие входные поля (признаки) нам необходимо использовать. Первоначально выбор осуществляется эвристически, далее количество входов может быть изменено.
Сложность может вызвать вопрос о количестве наблюдений в наборе данных. И хотя существуют некие правила, описывающие связь между необходимым количеством наблюдений и размером сети, их верность не доказана.
Количество необходимых наблюдений зависит от сложности решаемой задачи. При увеличении количества признаков количество наблюдений возрастает нелинейно, эта проблема носит название "проклятие размерности". При недостаточном количестве данных рекомендуется использовать линейную модель.
Аналитик должен определить количество слоев в сети и количество нейронов в каждом слое.
Далее необходимо назначить такие значения весов и смещений, которые смогут минимизировать ошибку решения. Веса и смещения автоматически настраиваются таким образом, чтобы минимизировать разность между желаемым и полученным на выходе сигналами, которая называется ошибка обучения.
Ошибка обучения для построенной нейронной сети вычисляется путем сравнения выходных и целевых (желаемых) значений. Из полученных разностей формируется функция ошибок.
Функция ошибок - это целевая функция, требующая минимизации в процессе управляемого обучения нейронной сети.
С помощью функции ошибок можно оценить качество работы нейронной сети во время обучения. Например, часто используется сумма квадратов ошибок.
От качества обучения нейронной сети зависит ее способность решать поставленные перед ней задачи.
Переобучение нейронной сети
При обучении нейронных сетей часто возникает серьезная трудность, называемая проблемой переобучения (overfitting).
Переобучение, или чрезмерно близкая подгонка - излишне точное соответствие нейронной сети конкретному набору обучающих примеров, при котором сеть теряет способность к обобщению.
Переобучение возникает в случае слишком долгого обучения, недостаточного числа обучающих примеров или переусложненной структурынейронной сети.
Переобучение связано с тем, что выбор обучающего (тренировочного) множества является случайным. С первых шагов обучения происходит уменьшение ошибки. На последующих шагах с целью уменьшения ошибки (целевой функции) параметры подстраиваются под особенности обучающего множества. Однако при этом происходит "подстройка" не под общие закономерности ряда, а под особенности его части - обучающего подмножества. При этом точность прогноза уменьшается.
Один из вариантов борьбы с переобучением сети - деление обучающей выборки на два множества (обучающее и тестовое).
На обучающем множестве происходит обучение нейронной сети. На тестовом множестве осуществляется проверка построенной модели. Эти множества не должны пересекаться.
С каждым шагом параметры модели изменяются, однако постоянное уменьшение значения целевой функции происходит именно на обучающем множестве. При разбиении множества на два мы можем наблюдать изменение ошибки прогноза на тестовом множестве параллельно с наблюдениями над обучающим множеством. Какое-то количество шагов ошибки прогноза уменьшается на обоих множествах. Однако на определенном шаге ошибка на тестовом множестве начинает возрастать, при этом ошибка на обучающем множестве продолжает уменьшаться. Этот момент считается концом реального или настоящего обучения, с него и начинается переобучение.

Выбор структуры нейронной сети
Выбор структуры нейронной сети обуславливается спецификой и сложностью решаемой задачи. Для решения некоторых типов задач разработаны оптимальные конфигурации [44, 51, 52].
В большинстве случаев выбор структуры нейронной сети определяется на основе объединения опыта и интуиции разработчика.
Однако существуют основополагающие принципы, которыми следует руководствоваться при разработке новой конфигурации [53]:
1. возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом выделенных слоев;
2. введение обратных связей наряду с увеличением возможностей сети поднимает вопрос о динамической устойчивости сети;
3. сложность алгоритмов функционирования сети (в том числе, например, введение нескольких типов синапсов - возбуждающих, тормозящих и др.) также способствует усилению мощи НС.
Вопрос о необходимых и достаточных свойствах сети для решения того или иного рода задач представляет собой целое направление нейрокомпьютерной науки. Так как проблема синтеза нейронной сети сильно зависит от решаемой задачи, дать общие подробные рекомендации затруднительно. Очевидно, что процесс функционирования НС, то есть сущность действий, которые она способна выполнять, зависит от величин синаптических связей, поэтому, задавшись определенной структурой НС, отвечающей какой-либо задаче, разработчик сети должен найти оптимальные значения всех переменных весовых коэффициентов (некоторые синаптические связи могут быть постоянными).

Пути достижения параллелизма
В общем плане под параллельными вычислениями понимаются процессы обработки данных, в которых одновременно могут выполняться несколько операций компьютерной системы. Достижение параллелизма возможно только при выполнении следующих требований к архитектурным принципам построения вычислительной среды:
• независимость функционирования отдельных устройств ЭВМ – данное требование относится в равной степени ко всем основным компонентам вычислительной системы: к устройствам ввода-вывода, обрабатывающим процессорам и устройствам памяти;
• избыточность элементов вычислительной системы – организация избыточности может осуществляться в следующих основных формах:
- использование специализированных устройств, таких, например, как отдельные процессоры для целочисленной и вещественной арифметики, устройства многоуровневой памяти (регистры, кэш);
- дублирование устройств ЭВМ путем использования, например, нескольких однотипных обрабатывающих процессоров или нескольких устройств оперативной памяти.
Дополнительной формой обеспечения параллелизма может служить конвейерная реализация обрабатывающих устройств, при которой выполнение операций в устройствах представляется в виде исполнения последовательности составляющих операцию подкоманд. Как результат, при вычислениях на таких устройствах на разных стадиях обработки могут находиться одновременно несколько различных элементов данных.
Возможные пути достижения параллелизма детально рассматриваются в [2, 11, 14, 28, 45, 59]; в этих же работах описывается история развития параллельных вычислений и приводятся примеры конкретных параллельных ЭВМ (см. также [24, 76]).
При рассмотрении проблемы организации параллельных вычислений следует различать следующие возможные режимы выполнения независимых частей программы:
• многозадачный режим (режим разделения времени), при котором для выполнения нескольких процессов используется единственный процессор. Данный режим является псевдопараллельным, когда активным (исполняемым) может быть один, единственный процесс, а все остальные процессы находятся в состоянии ожидания своей очереди; применение режима разделения времени может повысить эффективность организации вычислений (например, если один из процессов не может выполняться из-за ожидания вводимых данных, процессор может быть задействован для выполнения другого, готового к исполнению процесса – см. [73]). Кроме того, в данном режиме проявляются многие эффекты параллельных вычислений (необходимость взаимоисключения и синхронизации процессов и др.), и, как результат, этот режим может быть использован при начальной подготовке параллельных программ;
• параллельное выполнение, когда в один и тот же момент может выполняться несколько команд обработки данных. Такой режим вычислений может быть обеспечен не только при наличии нескольких процессоров, но и при помощи конвейерных и векторных обрабатывающих устройств;
• распределенные вычисления; данный термин обычно применяют для указания параллельной обработки данных, при которой используется несколько обрабатывающих устройств, достаточно удаленных друг от друга, в которых передача данных по линиям связи приводит к существенным временным задержкам. Как результат, эффективная обработка данных при таком способе организации вычислений возможна только для параллельных алгоритмов с низкой интенсивностью потоков межпроцессорных передач данных. Перечисленные условия являются характерными, например, при организации вычислений в многомашинных вычислительных комплексах, образуемых объединением нескольких отдельных ЭВМ с помощью каналов связи локальных или глобальных информационных сетей.
В рамках данного учебного материала основное внимание будет уделяться второму типу организации параллелизма, реализуемому намногопроцессорных вычислительных системах.

Powered by Drupal - Design by artinet