Деревья классификации

Деревья классификации - это метод, позволяющий предсказывать принадлежность наблюдений или объектов к тому или иному классу категориальной зависимой переменной в зависимости от соответствующих значений одной или нескольких предикторных переменных. Построение деревьев классификации - один из иерархического устройства сортировки монет. Заставим монеты катиться по узкому желобу, в котором прорезана щель размером с однокопеечную монету. Если монета провалилась в щель, то это 1 копейка; в противном случае она продолжает катиться дальше по желобу и натыкается на щель для двухкопеечной монеты; если она туда провалится, то это 2 копейки, если нет (значит это 3 или 5 копеек) - покатится дальше, и так далее. Таким образом, мы построили дерево классификации. Решающее правило, реализованное в этом дереве классификации , позволяет эффективно рассортировать горсть монет, а в общем случае применимо к широкому спектру задач классификации.
Деревья классификации идеально приспособлены для графического представления, и поэтому сделанные на их основе выводы гораздо легче интерпретировать, чем, если бы они были представлены только в числовой форме. Иерархическое строение дерева классификации - одно из
Процесс построения дерева классификации состоит из четырех основных шагов:
1. Выбор критерия точности прогноза
2. Выбор типа ветвления
3. Определение момента прекращения ветвлений
4. Определение "подходящих" размеров дерева
В конечном счете, цель анализа с помощью деревьев классификации состоит в том, чтобы получить максимально точный прогноз. Самый классификаций.

3. Дискриминантный анализ (классификация с обучением)
Дискриминантный анализ используется для принятия решения о том, к какому классу (группе) отнести тот или иной объект (процесс) на основе изучения его параметров или характеристик.) товара и задача состоит в том, чтобы установить, какие из параметров вносят свой вклад в различие (дискриминацию) между отдельно группируемыми совокупностями (сортами) товаров, образующих генеральную совокупность. После этого принимается решение о принадлежности этого товара к определенной группе. Следовательно, этот вид статистического анализа является многомерным и основная идея дискриминантного анализа заключается в том, чтобы определить, отличаются ли совокупности по среднему какого-либо параметра (переменной), и затем использовать эту переменную, чтобы предсказать для новых членов их бластей. Каждая из областей отличается от другой величиной определенного параметра (а вернее значением его среднего) или совокупностей параметров, принятых за классификационный признак. Правило дискриминации выбирается в соответствии с определенным принципом оптимальности, например, минимум вероятности ложной классификации.
В практических расчетах различения переходят от вектора признаков к линейной функции (дискриминантная функция), которая для двух групп (классов) имеет вид линейного уравнения множественной регрессии, в котором в качестве зависимых переменных выступают кодированные признаки различения на группы. Если имеется более двух групп, то можно составить более, чем одну дискриминантную функцию. Например, когда имеются три совокупности, то можно оценить: (1) - функцию для дискриминации смысле очень похож на многомерный дисперсионный анализ. Когда получены дискриминантные функции, возникает вопрос о том, как хорошо они могут предсказывать, к какой совокупности принадлежит конкретный образец? Для этого определяют показатели классификации или классификационные функции и очередное наблюдение или конкретный образец относят к той группе, для которой классификационная группа имеет наибольшее значение.

Powered by Drupal - Design by artinet