Основные понятия выборочного метода

Пусть — случайная величина, наблюдаемая в случайном эксперименте. Предполагается, что вероятностное пространство задано (и не будет нас интересовать).
Будем считать, что проведя раз этот эксперимент в одинаковых условиях, мы получили числа , , , — значения этой случайной величины в первом, втором, и т.д. экспериментах. Случайная величина имеет некоторое распределение , которое нам частично или полностью неизвестно. Рассмотрим подробнее набор , называемый выборкой.
В серии уже произведенных экспериментов выборка — это набор чисел. Но если эту серию экспериментов повторить еще раз, то вместо этого набора мы получим новый набор чисел. Вместо числа появится другое число — одно из значений случайной величины . То есть (и , и , и т.д.) — переменная величина, которая может принимать те же значения, что и случайная величина , и так же часто (с теми же вероятностями). Поэтому до опыта — случайная величина, одинаково распределенная с , а после опыта — число, которое мы наблюдаем в данном первом эксперименте, т.е. одно из возможных значений случайной величины . Выборка объема — это набор из независимых и одинаково распределенных случайных величин («копий »), имеющих, как и , распределение . Что значит «по выборке сделать вывод о распределении»? Распределение характеризуется функцией распределения, плотностью или таблицей, набором числовых характеристик — , , и т.д. По выборке нужно уметь строить приближения для всех этих характеристик.

Powered by Drupal - Design by artinet