Выборочное распределение

Рассмотрим реализацию выборки на одном элементарном исходе — набор чисел , , . На подходящем вероятностном пространстве введем случайную величину , принимающую значения , , с вероятностями по (если какие-то из значений совпали, сложим вероятности соответствующее число раз). Таблица распределения вероятностей и функция распределения случайной величины выглядят так:






Распределение величины называют эмпирическим или выборочным распределением. Вычислим математическое ожидание и дисперсию величины и введем обозначения для этих величин:

Точно так же вычислим и момент порядка

В общем случае обозначим через величину

Если при построении всех введенных нами характеристик считать выборку , , набором случайных величин, то и сами эти характеристики — , , , , — станут величинами случайными. Эти характеристики выборочного распределения используют для оценки (приближения) соответствующих неизвестных характеристик истинного распределения.
Причина использования характеристик распределения для оценки характеристик истинного распределения (или ) — в близости этих распределений при больших . Рассмотрим, для примера, подбрасываний правильного кубика. Пусть — количество очков, выпавших при -м броске, . Предположим, что единица в выборке встретится раз, двойка — раз и т.д. Тогда случайная величина будет принимать значения 1, , 6 с вероятностями , , соответственно. Но эти пропорции с ростом приближаются к согласно закону больших чисел. То есть распределение величины в некотором смысле сближается с истинным распределением числа очков, выпадающих при подбрасывании правильного кубика.Мы не станем уточнять, что имеется в виду под близостью выборочного и истинного распределений. В следующих параграфах мы подробнее познакомимся с каждой из введенных выше характеристик и исследуем ее свойства, в том числе ее поведение с ростом объема выборки.

Powered by Drupal - Design by artinet